

Scia Engineer Concrete for Starters Scia Engineer All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. Scia is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

 ${\mathbb C}$ Copyright 2013 Nemetschek Scia nv in cooperation with Joren Severy and Yoshi Vemeiren. All rights reserved.

Table of contents

Starting a project	4
Defining the construction	5
Applying the loads1	0
Materials library1	6
inear calculation1	17
Results1	9
Concrete – general2	23
Concrete – theoretical reinforcement2	25
Concrete – AMRD2	27
Concrete – checks	31
Concrete – Bill of reinforcement	36
Document	37

Note: this manual is created with version type *2012.0.116* of Scia Engineer.

1D Beam

Starting a project

Starting a new project

To start a new project, one has to click on **New**, which can be found in the toolbar. A new project will open in a new screen, namely **Select New Project**. Because calculations will have to be made, choose for the option **Analysis**.

Next the dialog box Project data will appear.

Entering the project data

- united the	Data				Material		
Scia	Name:	Concrete fr	or Starters		Concrete	1	
	- Contract				Material	C25/30	*
	Part:	1D Beam			Reinforcement	B 500A	7
	1.07.0	10 beam			Steel		
	Descriptions	Instruction	1		Timber	1077	
	Description:	1150 000011			Masonry		
	Author:	JS & YV			Other	100	
	Autior.				Aluminium	1021	
	Date:	06, 02, 20	13				
	h				Code		
	Structure:				National Code:		
	Frame XZ			* .	EC - EN		7
	Project Level:		Model:		National annex:		
	Standard	*	One	*	Belgian NB	N-EN NA	·

In this dialog box, the general data of the project has to be entered (e.g. name, author, etc.). As construction type, choose for the option **Frame XZ**, this leads to a

4

structure of which all nodes are fixed. Consequently, the user will be able to introduce forces on the elements themselves (**Truss XZ** implies structures with hinged nodes, where forces can only be applied in these nodes).

Additionally, the user can further specify the used materials. In this example is opted for **Concrete C25/30** and **Reinforcement steel**, type B 500A.

Finally, the calculations will be executed according to **NBN-EN NA**. Click on the **OK button** to confirm the project data.

Defining the construction

The 1D-beam

To determine the geometry of the structure, double-click on **Structure** in the **Main menu** option.

The selected menu will open. In this project, there is chosen for a 1D beam. This can be done through the submenu **1D member > Beam**.

Because there is no section that has been defined yet, the window **New cross-section** will open up automatically. The beam in this project has a rectangular cross-section. To create this cross-section, one has to select **Rectangle** and click the **Add button**.

Available groups	Available items of this group	Items in project
E Concrete E Geometric shapes Numerical ☆ General P Precast T Bridge		*
Rectangle	Profile Library filter	Add Clos

Now the dimensions of this cross-section have to be entered. Choose the following input parameters:

After entering the data, click on the **OK button**. As a result, this cross-section will become available for the user in the **Cross-section window**.

Then click **Close**.

Now it is possible to adjust the specifications of the beam. In this case, one has to choose for a length of **10 meters**.

Name	B1	
Туре	beam (80)	,
Analysis model	Standard	
CrossSection	CS1 - Rectangle (700; 400)	·
Alpha	0	1
Member system-line at	centre	2
ez [mm]	0	
FEM type	standard	
Buckling and relative lengths	Default	
Layer	Layer1	·
4 Geometry		
Length [m]	10,000	
Insertion point	begin	

Confirm the input by clicking the **OK button**. In the command line appears **New beam – Enter point**. The insertion point here, should be the origin of the GCS (Global Coordinate System), this can be done by entering the x,z-coordinates as follows:

	にはななななどがMKは用家 くびやく X ウメノ
New beam - Enter point > 0 0	

The coordinates can also be entered, separated by a semicolon (;). To complete the input, click the **Esc key**. Finally, to deselect the beam, click the **Esc key** again.

7

The beam will be displayed as follows:

N ↓ ★

<u>Remark</u>: through the ^I button, other cross sections can be defined.

Adding the supports

Now the supports of the structure have to be added. This is done by using the option **Model data** > **Support** – in node in the **Structure menu** that is already active.

In the dialog box **Support in node**, one can adjust the details of the supports. At the leftmost point of the beam, the beam is supported by a hinge, so the following entry must be confirmed with the **OK button**.

	Name	Sn1	
	Туре	Standard	-
	Angle [deg]		
	Constraint	Hinged	2
/	x	Rigid	*
	Z	Rigid	7
AZ	Ry	Free	7
	Default size [m]	0,200	
(1)			

Select the appropriate node to add the previously defined support. Then deselect by double-clicking the Esc key twice. To add a sliding support at the right most point of the beam, use the same method (use other parameters) or click on the icon **Sliding support**.

Com	mand	t line	e		
2	2	8	t	 	

Finally, the following output will we obtained:

<u>Remark</u>: With the buttons, located above the **Command line**, the representation of the structure can be adjusted.

Checking the construction

In order to check the construction, one can use the Check structure data button

1. By clicking the **Check button** in the dialog box **Check of structure data**, the construction check will be executed. When there are no problems to be found, the following output will appear:

Check of structure data	Σ
Check of nodes	
Search duplicate nodes	Ignore parameters
Check of members	
Check members Search null members	Null members: 0
Search duplicate members	Duplicate members: 0
Check of data references	Data check report
Check of additional data	on Invalid position 0
Check of steel connections — Check steel connections	Invalid connections 0
Check load panels	Check cross-links
Check additional data	Check duplicity of names Continue Cancel

The structure check can be closed, through the **OK button**. Next click the **Close button** in the submenu Construction to return to the Main menu. It is also possible to use the following icon **B**.

Applying the loads

Creating the load cases

The loads can always be divided into permanent and imposed loads. In this project there are 3 permanent loads and 1 imposed load, these are:

Permanent loads

- Self weight of the beam
- Weight of the slab, located on the beam
- Weight of the finishing layer

Imposed load

• Category B (offices)

To apply the loads, double-click the option **Load cases**, **Combinations** in the Main menu. Because there are no loads yet defined, the dialog box **Load cases** will open automatically. Here, the user can define the characteristics of the loads. First enter the self weight of the beam as follows:

LC1 - Self Weight	Name	LC1	
	Description	Self Weight	
	Action type	Permanent	
	LoadGroup	LG1	·
	Load type	Self weight	1
	Direction	-Z	

By clicking the **New button**, the remaining permanent loads can be entered as well. Be sure to select **Standard** as **Load type**, when creating the permanent loads, other than the self weight. Finally, to add the variable load, insert following parameters.

🚚 🤮 🗶 🖬 💽 🕻	• 🖸 🕾 🚭 🖉 📲 🛤		• 8
LC1 - Self Weight	Name	LC4	
LC2 - Slab LC3 - Finishing Layer LC4 - Variable Load	Description	Variable Load	
	Action type	Variable	
	LoadGroup	LG2	·* .
	Load type	Static	
	Specification	Standard	
	Duration	Short	1
	Master load case	None	
	Actions		
	Delete all loads		>>>
	Copy all loads to another loadcase	2	>>>

.G2	Name	LG2	
	Relation	Standard	
	Load	Variable	
	Structure	Building	
	Load type	Cat B : Offices	

Click the **OK button** to return to the dialog box **Load cases**. If the necessary loads are created, one closes the entry by using the **Close button**.

<u>Remark</u>: Load groups determine the way the individual loads will be combined with each other, when making load combinations.

<u>Remark</u>: Load cases can be adjusted through the option **Load cases**, **Combinations** < **Load Cases**.

Applying the loads

The submenu **Load** will open automatically. Within this menu, all the different loads can be applied. By clicking \checkmark , the user can choose the proper load case. Scia Engineer will automatically calculate the self weight of the structure, therefore no further attention needs to be spend on this load case. The weight of the slab (**LC2** – **Slab**) on the beam can be represented as a **Line force** of 15 kN/m. This can be done by double-clicking **Line force** – on beam.

In the dialog box Line force on beam, the following parameters have to be entered:

Note that the value of the load is negative, this is because the load disposes of a negative sense in the Z-direction. The **System** is set to **LCS** (Local Coordinate System), this means that all parameters are related to the coordinate system of the structure. Choose **Rela** as **Coord. definition**, hereby the values of **Position x1** and **Position x2** will be applied, relative to the beam. The value 0,000 for **Position x1** will therefore propose the starting point of the beam, the value 1,000 for **Position x2** the endpoint.

After clicking the **OK button**, one obtains a graphical representation of the applied load.

In this example, only Line forces occur. This means all loads can be applied as described above. LC3 – Finishing layer has a value of -6,9 kN/m and LC4 – Variable load a value of -9 kN/m.

Creating the load combinations

The load combinations can be created with the option **Load cases, Combinations > Combinations**, these will be generated according to the national annex NBN-EN NA.

First, one has to create the combinations in the Ultimate Limit State (ULS) as follows:

Lontents of	combination	List of load cases	
E Loz	ad case LC1 - Self Weight LC2 - Slab LC3 - Finishing Layer LC4 - Variable Load	 Load case LC1 - Self Weight LC2 - Slab LC3 - Finishing La LC4 - Variable Load 	iyer
Name :	JULS	Delete	Add
Name : Coeff :	ULS Correct	DeleteDelete All	Add All
225 - 921			
Coeff : Type :	1 Correct		
Coeff : Type : Structure:	1 Correct		

This ULS-combination contains all created loads, one can add this to **Contents of combination** through the **Add All button**. The user also has the possibility to add an additional **Description**. Choose the **type EN-ULS (STR/GEO) Set B**, as this is the permanent situation without any geotechnical effects. Confirm with the **OK button**.

Next, a combination for the Serviceability Limit State (SLS) has to be created. This can be done by clicking the **New button** en choosing the **type EN-SLS Quasi- permanent**.

Contents of	combination		List of load cases	
E- Co	ad case LC1 - Self Weight LC2 - Slab LC3 - Finishing Layer LC4 - Variable Load		 Load case LC1 - Self Weight LC2 - Slab LC3 - Finishing La LC4 - Variable Lo. 	ayer
Name :	SLS		Delete	Add
		Correct	Delete Delete All	Add Add All
Coeff :				
Name : Coeff : Type : Structure:	1 (
Coeff : Type : Structure:	1(EN-SLS Quasi-permane			

The created combinations can always be consulted in the dialog box Combinations.

ULS - Permanent ULS	Name	SLS		
SLS - Quasi-permanen	Description	Quasi-permanent SLS		
	Туре	EN-SLS Quasi-permanent		
	Structure	Building		
	Active coefficients			
	Contents of combination			
	LC1 - Self Weight [-]	1,00		
	LC2 - Slab [-]	1,00		
	LC3 - Finishing Layer [-]	1,00		
	LC4 - Variable Load [-]	1,00		
	Actions			
	Explode to envelopes	>>>		
	Explode to linear			
	Show Decomposed EN combination	ns >>>		

Click the **Close button** to close this window.

<u>Remark</u>: through the <u>>>></u> behind **Explode to linear** in the dialog box **Combinations**, all possible linear combinations will be generated from the selected combination, in order to perform any checkups.

Materials library

The characteristics of the used materials can be consulted and modified in the materials library. This option is located in the menu bar.

The dialog box **Materials** will open. All materials are listed on the left and the specific characteristic on the right.

C12/15	*	Name	C25/30	
C16/20 C20/25		Code independent		
C25/30		Characteristic compressive cylind	25,00	
C30/37 C35/45		Calculated depended values	V	
C40/50		Mean compressive strength fcm(
C45/55		fcm(28) - fck(28) [MPa]	8,00	
C50/60		Mean tensile strength fctm(28) [2,60	
C55/67		fctk 0,05(28) [MPa]	1,80	
C60/75	Ξ	fctk 0,95(28) [MPa]	3,40	
C70/85 C80/95	- 11	Design compressive strength - pe	. 16,67	
C90/105		Design compressive strength - ac		
B 400A		Strain at reaching maximum stren		
B 500A		Ultimate strain eps cu2 [1e-4]	35.0	
B 600A		Strain at reaching maximum stren	17.5	
B 400B B 500B		Ultimate strain eps cu3 [1e-4]	35.0	
B 600B		Stone diameter (dg) [mm]	32	
B 400C		Cement class	N (normal hardening - CEM 32,5.	
B 500C		Cement type - for BS and French		
B 600C		Type of aggregate	Ouartzite	
C12/15(EN1992-2)		Measured values		
C16/20(EN1992-2) C20/25(EN1992-2)		▲ Stress-strain diagram		
C25/30(EN1992-2)		Type of diagram	Parabola-rectangle stress-strain .	
C30/37(EN1992-2)		Picture of Stress-strain diagram		

Any further calculations will be performed according to a **parabola-rectangle** stress-strain diagram as Type of diagram for the material C25/30.

Choose also for a **Bi-linear without an inclined top branch** for steel **B 500A**. To obtain a graphical representation, click ... after **Picture of Stress-strain diagram**.

Linear calculation

After creating and applying the loads, the construction needs to be calculated. This is done through IP. A new dialog box, **FE analysis**, will appear. Perform a linear calculation by clicking the **OK button**.

Scia	Single analysis Batch analysis		
ngineer	Linear calculation		Г
	C Nonlinear calculation		Г
	C Modal analysis		Г
	C Linear stability		Г
	Concrete - Code Dependent Deflections (CDD)		Г
	C Construction stage analysis		Г
	← Nonlinear stage analysis		Г
	C Nonlinear stability		
	C Test of input data		
	Number of load cases: 4		
	Solver setup	Mesh setup	
	ΟΚ	Cancel	

After performing this linear calculation, Scia Engineer reports the end of the calculation:

Click the **OK button** to close this window.

Results

Main ц. Project ##: Line grid and storeys BIM toolbox Structure Load <u>J</u> Load cases, Combinations Calculation, mesh Ŧ Results Open connection Concrete Document 🛨 🕍 Drawing Tools Libraries + 目 Ŧ 2 Tools

After completing the calculation, the user gains access to the **Results menu**.

Reaction forces

Through **Results > Supports > Reactions**, the reaction forces at the supports can be determined.

In the **Properties window**, the user can adjust any settings. To display the reaction forces in the Z-direction, choose as **Values** for **Rz**. Be sure **Combinations** are set to **ULS-Permanent**.

Properties	4	×
Reactions (1)	- 12 17	1
Name	Reactions	
Selection	All	73
Type of loads	Combinations	*
Combinations	ULS - Permane	٣
Filter	No	×
Values	Rz	¥
Extreme	Node	٠
Drawing setup 1D		
Rotated supports	and the second s	

Next, to visualize the reaction forces, according to the chosen properties, click ______, located behind **Refresh**.

Actions	
Refresh	>>>
Preview	>>>

The result will be shown as follows:

The results in **SLS**, following result will be obtained:

Internal forces

Through **Results > Beams > Internal forces on beam**, the internal forces can be requested.

In the **Properties**, the user has to select the appropriate properties:

Properties	.	×
Internal forces on member (1)	· Va V/	ł.
	8 4	9
Name	Internal forces on member	f.
Selection	All	*
Type of loads	Combinations	¥
Combinations	ULS - Permanent ULS	7
Filter	No	7
Values	More comp	٣
N		
Vz		
My		
Extreme	Global	-
Drawing setup 1D		•••
Drawing	Screen	7
Section	All	7

The results will be visible after clicking >>>>, behind **Refresh**. Following internal forces will be given, in case of the **ULS**:

And for the **SLS**:

Concrete - general

Through the **Concrete menu** in Main menu, the user has the ability to perform specific concrete related checkups.

Main	4	×
	Project	
	Line grid and storeys	
	BIM toolbox	
P	Structure	
1 da	Load	
₽ 1 2	Load cases, Combinations	
+	Calculation, mesh	
	Results	
	Open connection	
	Concrete	
02	Document	
+	Drawing Tools	
• 🗐	Libraries	
± ×	Tools	

To adjust the properties of a concrete element, consult the option **1D member > Member data**.

The concrete element, of which the properties need to be changed, has to be selected. This is indicated in the command line.

The dialog box **Concrete 1D data** will open. After ticking the **Advanced mode**, the user can perform several adjustments concerning the characteristics of the selected element. These adjustments need to be done as follows:

After clicking the **OK button**, a label will appear next to the concrete member. By selecting this label, the properties can be consulted or changed.

<u>Remark</u>: the user is also able to change the overall settings of all the different elements through the **Design defaults**. However these changes will not affect the elements that have been provided with member data.

$Concrete-theoretical\ reinforcement$

Through the option **1D member > Member design – Design**, several aspects of the theoretical reinforcements can be calculated.

Choose the following options in the properties window:

Properties	4	×
Design As EN 1992-1-1 (1)	- Va V/	Ø
	e 4	4
Name	Design As EN 1992-1-	1
Selection	All	•
Type of loads	Combinations	4
Combinations	ULS - Permanent ULS	٣
Filter	No	7
Print explanation of error	V	
Use named joints		
Use named cuts		
Values	As total req.	
Extreme	Member	•
Drawing setup 1D		•••
Section	All	-

By choosing As total req. and clicking \longrightarrow , Scia Engineer will calculate the reinforcement that is needed to resist the internal forces [mm²].

	orașe di transferi	H 🗆 💻	201		- 🖾 🖾	def	ault	- 🚇 🖽 d	lefault	· ·	
esign /	As EN	1992-1	-1								
inear calc Selection : Combinatic Main lowe	All ins : ULS	5		d beams							
Member	d _x [m]	Case	N _d [kN]	M _{yd} [kNm]	x _u [mm]	d [mm]	A _{s,reg} [mm ²]	Reinf.[no.]	W/E		
	5,000	ULS/1	0,00	654,19	264	650		6x25,0(2945)	68		
B1											
B1 Explanation	on of wa	rnings ar	nd error	s							

<u>Remark</u>: by ticking **Print explanation of errors**, any errors (E) or warning (W) will be explained.

<u>Remark</u>: by selecting **As user defined** or **As add. req.**, respectively the reinforcement added by the user and the extra reinforcement that is needed will be given.

Concrete – AMRD

The user is also able to calculate and apply automatically the practical reinforcement.

Member data

Within 1D member < Automatic member reinforcement design < Member data, the user is able to determine the Maximal numbers of bigger diameters than the default diameter In this example, the value for this option is equal to 2. Because there is already chosen for a diameter of 25,0 mm, Scia Engineer will try to implement reinforcement bars with diameters varying from 25,0, 28,0 and 32,0 mm.

After confirming the properties, the selected element will obtain another label.

Reinforcement design

Through 1D member < Automatic member reinforcement design < Reinforcement design, one can calculate the actual reinforcement, after entering the correct parameters and confirming these by clicking the **Refresh button**.

The following output will be displayed:

<u>Remark</u>: It is possible to display the reinforcement bars in a more realistic manner by changing the properties in the **Set view parameters for all** option.

2	Zoom all	
R	Zoom by cut out	
ď	Set view parameters for all	
R	Cursor snap setting	
	Print/ Preview table	
0	Table to document	
ø	Print picture	
6	Picture to document	
1	Picture to gallery	
	Save picture to file	
•	Copy picture to clipboard	
00	Wired model in view manipulations	
9	Advanced graphic setup	
11?	Coordinates info	Î

More specifically by changing the settings in the Concrete - tab as follows:

N	P Structure Modelling/Drawing 🔊 Attrib			
	👗 Model 📔 🛃 Loads/m	asses 🛛 📅 Concre	te	
7	Check / Uncheck all			
-	Service			
	Display on opening the service	V		
Ξ	Concrete + reinforcement			
	Display	V		
	Member data			
	SaT detail data			
	Main reinforcement			
	Style of main reinforcement	all		
	Stirrups	~		
	Style of stirrups	all	÷	
	Number of stirrups	all		
	Color of reinforcement	colour by diameters	-	
	Scheme of reinforcement			
	Reinforcement drawing type	3D	-	
	Rounded bends			
Ξ	Concrete labels			
	Display label	V		
	Name			
	User defined reinforcement			
	Diameter			
	Material	Г		
	Cover	1		
	Environment class			
Ξ	Reinforcement labels			
	Display label	V		
	Type position number	V		
	Name	5		
	Diameter			
	Materials	Г		
	Reinforcement area			
	Reinforcement position			
	Style of reinforcement position	positions on member		
	Labels plane	local beam plane xz	-	
	Stirrup label	dimension	¥	
	Type position number	local	-	

Eventually, the reinforcement bars will be displayed like this:

<u>Remark</u>: by using the following buttons b b b b b b c c c c, the user is able to change the view or to zoom in and out.

Concrete - checks

Capacity check (ULS)

The capacity check is performed in order to check whether the interaction between the normal force N and the bending moments M_y and M_z is located within the fixed boundaries. This check determines the efficiency of the added reinforcement and is executed through the option 1D member < Member check < Check of non-prestressed concrete < Check capacity.

Choose for the properties as shown below:

Properties	4	×
Check capacity EN 1992-1	-1 (1) 🔽 🏹 🖉	F.
Name	Check capacity EN 1.	
Selection	All	•
Type of loads	Combinations	¥
Combinations	ULS - Permanent ULS	
Filter	No	
Print explanation of err		
Type of values	Extreme values	
Values	Check value	Ψ.
Extreme	Member	*
Drawing setup 1D		
Section	All	×.

After refreshing, the output will be as follows:

<u>Remark</u>: the output will be the maximum value, which has to be smaller than 1 in order to be correct. A correct output will be displayed in green.

The results of each cross section can be observed by clicking >>>> , behind **Single Check**. The command line will ask the user to select the member of which the cross section will be analyzed.

<u>Remark</u>: it is necessary to click **Calculation**, in order to obtain the output as shown above. The user is also able to choose the exact position of the cross section, as well as to scroll through the results by using the tabs.

Response check (ULS)

This check is executed in order to make sure the stresses, in both concrete and reinforcement steel, do not excess their limit values. The check can be performed through 1D member < Member check < Check of non-prestressed concrete < Check response.

Select the following settings in the properties window:

Properties	4	×	
Check response EN 1992-1-1 (1) 🛛 🔽 🔽 (ŗ	
	🕐 J	h	
Name	Check response EN 1992-3	1-1	
Selection	All		
Type of loads	Combinations		
Combinations	ULS - Permanent ULS		
Filter	No		
Print explanation of errors a			
Use named joints			
Use named fibres			
Use named CSS parts			
Type of values	Extreme values		
Values	Check value		
Extreme	Member	-	
Drawing setup 1D			
Section	All	*	

After clicking the **Refresh button**, the following output will be obtained:

The user is also able to request a **Preview** and to perform a **Single Check**.

Crack control (SLS)

Scia Engineer also offers the opportunity to check the construction for possible cracks. This is done with the option 1D member < Member check < Check of non-prestressed concrete < Crack control.

The properties should be changed as shown below:

Properties		×	
Crack proof EN 1992-1-1 (1)	📑 🖬 🌾 /	ŧ.	
	6 4	b.	
Name	Crack proof EN 1992-1-1		
Selection	All	7	
Type of loads	Combinations	*	
Combinations	SLS - Quasi-permanent SLS	-	
Filter	No	X	
Print explanation of errors an	V		
Type of used reinforcement	Asuser	*	
Values	Check value		
Extreme	Member	÷	
Drawing setup 1D			
Section	All	*	

Make sure to choose the option **Asuser**, this value is equal to the previously added reinforcement during the AMRD. After clicking the Refresh button, the output will be as follows:

The user is also able to request a **Preview** and to perform a **Single Check**.

Concrete - Bill of reinforcement

The length and mass of the added reinforcement can be requested through the option **1D member < SaT_Details < Bill of reinforcement**.

After refreshing the following properties, the user will be able to view the output:

Properties	P >
Bill of reinforcement (1)	📑 Va V/ /
	😤 📣
Name	Bill of reinforcement
Selection	All
Filter	No
Туре	Reinforcement
Type of position number	Global
Values	Mass
Drawing setup 1D	

	reinforcement an n number : Glob		s are calc	ulated wit	hout rounded	bends.		
Member	Position number	Diameter [mm]	Material	Length [m]	Number of bars	B 500A length [m]	B 500A weight [kg]	
B1	1	8	B 500A	2,800	93	260,400	102,7	
B1	2	25	B 500A	10,000	2	20,000	77,1	
B1	3	28	B 500A	10,000	2	20,000	96,7	
B1	4	28	B 500A	8,500	2	17,000	82,2	
B1	5	28	B 500A	4,500		4,500	21,8	
			8	0-1000		260,400	102,7	
			25			20,000	77,1	
			28			41,500	200,6	
			Total for material			321,900	380,4	
		1	Total	D 1		321,900	380.4	

Document

All required results can be put together in one document. This function can be activated in the Main menu.

By clicking New, the required results can be selected. These will be included in the Document. In the dialog box New document item, all items are summed up. These can be added by the user by clicking www.adding.org and the dialog box New document item, all items are summed up. These can be added by the user by clicking www.adding.org and the dialog box New document item, all items are summed up. These can be added by the user by clicking www.adding.org and the dialog box New document item, all items are summed up. These can be added by the user by clicking www.adding.org adding for example Results < Internal forces on member, the following output will be obtained:

1. Internal forces on member

Linear calculation, Extreme : Global, System : LCS Selection : All Load cases : LC1

Member	Case	dx [m]	N [kN]	Vz [kN]	My [kNm]
B1	LC1	0,000	0,00	34,34	0,00
B1	LC1	10,000	0,00	-34,34	0,00
B1	LC1	5,000	0,00	0,00	85,84

<u>Remark</u>: in order to gain more insight, it is useful to add the **Combination key**.

New document item	12
🕀 🔶 Default	-
Project	E
🛨 🔶 Libraries	
🚊 🔶 Sets	
Load cases	
Load groups	
Combinations	
Result classes	
Combination key	
🛨 🔶 Solver and Mesh	-
	•
<<< Add	Close